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ring fusion is 198% cis as judged by inspection of their 
'H 2D NOESY NMR spectra and/or 1D 'H-decoupled 
spectra as well as 13C NMR spectra. For example, the lH 
2D NOESY NMR spectrum of 9 clearly indicates that the 
proton that is @ and cis to the COOMe group is also cis 
to the bridgehead proton and that the other @ proton is 
trans to it. 

The reaction of the lithium enolate of 3-cyclohexenone 
with lb  and 2b under mild and well-controlled conditions 
gave the corresponding deconjugated derivatives. Un- 
fortunately, however, their treatment with Pd(PPh,),- 
NEt, only induced double-bond isomerization to produce 
the conjugated enones which showed no sign of cyclization. 
The use of 10, obtained by methylation of 3-cyclohexenone, 
however, cleanly produced 11 and 12 from l b  and 2b, 
respectively. As expected, their treatment with 3-5 mol 
% of Pd(PPh3), and NEt3 (1.5-2.0 equiv) gave isomerically 
pure 13 and 14 in 82 and 71% yields, respectively. The 
stereochemical assignments are based on the same protocol 
as described above. Although the scope of these type I 
annulation procedures appears to be limited to the cases 
of P,y-unsaturated carbonyl derivatives which cannot 
isomerize into the a,@-unsaturated derivatives, the results 
shown in eq 1-5 nonetheless represent efficient and se- 
lective [3 + 21 annulation procedures which appear to be 
of considerable synthetic utility. 

To demonstrate the feasibility of type I1 annulation of 
2-cyclohexenone derivatives, we prepared 16 and 17 by 
treating 15 with LDA, lb,  and 2c, respectively, followed 
by reduction with LiA1H4 and deethylation with HC1. 
Under the Pd-catalyzed cyclization conditions, 16 was 
cleanly converted into 18 in 68% yield (91% by GLC), 
which is isomerically homogeneous. Likewise, 17 gave 19 
in 50% yield. In addition to 19, the double bond hydro- 
genated byproduct was also obtained in 30% yield. Similar 
radical cyclization procedures have recently been devel- 
oped." However, the C=C bond of the enone group is 
lost in the radical cyclization reactions. 

Finally, the feasibility of achieving carbonylative [3 + 
2 + 11 annulation was tested by treating 2012 with CO (600 
psi) in the presence of 5 mol % of Pd(PPh,), and NEt3 
(1.5 equiv) at 100 "C. After 16 h, isomerically pure 21 was 
obtained in 67 % . We are currently investigating the scope 
of this carbonylative annulation reaction. 

The following procedure for the conversion of 10 into 
13 is representative. 3-Cy~lohexen-l-one'~ prepared by the 

(11) Marinovic, N. N.; Ramanathan, H. Tetrahedron Let t .  1983, 24, 

(12) The Pd-catalyzed cyclization reaction of 20 was recently reported 
1871. 

as an isolated case of annulative carbocycle formation.gd 

Birch reduction of anisole was converted into 10 in 70% 
yield by sequential treatment with LDA (1 equiv, -78 "C, 
1 h) in a 2:l mixture by volume of THF and HMPA, CH,I 
(3-5 equiv, -78 "C, 12 h), and 3 M HC1 (-78 "C). Se- 
quential treatment of 10 (5 mmol) in 10 mL of THF with 
LDA (5 mmol), HMPA (5 mL), and l b  (2.10 g, 6 mmol, 
-78 "C, 6 h) gave a 62% yield of 11. A mixture of 11 (0.664 
g, 2 mmol), Pd(PPh,), (0.069 g, 0.06 mmol), NEt, (0.404 
g, 4 mmol), and 10 mL of MeCN was refluxed for 6 h. The 
reaction mixture was quenched with 3 M HCl, extracted 
with ether, washed with aqueous NaHC0, and brine, dried 
over MgS04, concentrated, and flash chromatographed 
(silica gel, 1 : l O  ether-hexane) to give 0.334 g (82%) of 13: 
IR (neat) 1670 (s) cm-'; 'H NMR (CDCl,, Me,&) 6 0.89 
(t, J = 7 Hz, 3 H), 1.24 (s, 3 H), 1.2-1.6 (m, 4 H), 1.8-2.0 
(m, 2 H), 2.10 (d, J = 15 Hz, 1 H), 2.40 (dt, J = 19 and 
4 Hz, 1 H), 2.58 (br d, J = 19 Hz, 1 H), 2.76 (br s, 1 H), 
2.85 (d, J = 15 Hz, 1 H), 5.37 (s, 1 H), 5.99 (d, J = 10 Hz, 
1 H), 6.77 (dt, J = 10 and 4 Hz, 1 H); 13C NMR (CDC1,) 
6 13.80, 21.97, 22.40, 23.95, 28.92, 29.25,41.12, 50.40, 53.21, 
123.63, 129.68, 145.48, 145.65, 204.39; high-resolution MS 
calcd for C14H200 204.1514, found 204.1513. 
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Prostaglandin Synthesis via Two-Component 
Coupling. Highly Efficient Synthesis of Chiral 
Prostaglandin Intermediates 
4-Alkoxy-2-alkyl-2-cyclopenten-l-one and 
4-Alkoxy-3-alkenyl-2-methylenecyclopentan-l-one 

Summary: Starting with readily available (2R,3S)-1,2- 
epoxypent-4-en-3-01 ( 5 ) ,  two chiral prostaglandin inter- 
mediates 4-alkoxy-2-alkyl-2-cyclopenten-l-one (1) and 
4-alkoxy-3-alkenyl-2-methylenecyclopentan-l-one (2) are 
prepared in good overall yields through the common key 
intermediate 3,4-dialkoxy-2-methylenecyclopentan-l-one 
(3), thus making prostaglandin synthesis via two-compo- 
nent coupling an industrially viable process. 

Sir: One of the most attractive methods for synthesis of 
prostaglandins (PGs) and their analogues is undoubtedly 
the two component coupling process via conjugate addi- 
tion.2 This process can be classified into two possible 

(1) Fellow of the Japan Society for the Promotion of Science for 
Japanese Junior Scientists, 1988-1990. 

0022-3263/88/1953-5590$01,50/0 0 1988 American Chemical Society 



Communications J. Org. Chem., Vol. 53, No. 23, 1988 5591 

routes: introduction of the w side chain onto a 4-alkoxy- 
2-alkyl-2-cyclopenten-1-one (1) (eq 1)3 and introduction 

2 R, - Ct12R,' 

of the CY side chain onto a 4-alkoxy-3-alkenyl-2- 
methylenecyclopentan-1-one (2) (eq 2).4 In contrast to 
the PG synthesis via Corey lactone or via the three com- 
ponent coupling process developed by Noyori et al., these 
two routes, however, do not appear to be industrially viable 
because of the lack of an efficient way to obtain chiral 1 
and 2.2 

We now report a practical method for the synthesis of 
chiral 1 and 2. The key features of our synthesis illustrated 
in Scheme I are as follows: The key intermediate enone 
3 is prepared efficiently from readily available chiral epoxy 
alcohol (2R,3S)-l,2-epoxypent-4-en-3-01 (5). The enone 3 
thus prepared reacts with an organometallic compound 
derived from the a side chain unit to give 1 via a 1,4-ad- 
dition reaction which is accompanied by the direct elim- 
ination of the alkoxy group (OR).5 Compound 3 is also 
converted into 2, which involves the organocuprate con- 
jugate addition of the w side chain unit to 4, obtained from 
3 by the Michael addition of Et2NH. 

The synthesis of 3 (a, R = CH,OCH,; b, R = CH,) was 
carried out by the procedure shown in Scheme 11, starting 
with 5, which is readily obtained in large quantity by the 
Sharpless asymmetric epoxidation of 1,4-pentadien-3-01.~ 
Protection of the hydroxyl group of 5 (>%YO ee) followed 
by epoxide ring opening with cyanide ion and silylation 
with TBSCl afforded 6. Reduction of 6 with Dibal followed 
by reaction of the resulting aldehyde with hydroxylamine 
gave oxime 7. The conversion of 7 into the @-hydroxy 
ketone 9 was carried out according to the procedure re- 
ported by Kozikowski and Stein,7 and Curran.8 Thus, 
oxidation of 7 with aqueous NaOCl resulted in the nitrile 
oxide cycloaddition to afford 8 (a mixture of two diaste- 
reomeric isomers), which was partially purified by passage 
through a short silica gel column. Hydrogenolysis/ hydr- 
olysis of 8 with Hz (1 atm) and 10% Pd/C in aqueous THF 
containing B(OH), gave 9. Mesylation of 9 was accom- 
panied by direct elimination to give the enone 3, which was 
purified by chromatography. In these reactions, the in- 
termediates except 8 were used for the next reaction 
without purification. The overall yields of 3 from 5 were 
52% for 3a ( [aIz5D -60.9" (c  1.29, CHC13)) and 53% for 3b 
([a'Iz5D -37.8" ( c  2.32, CHCl,)), respectively.9 
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(3) Sih, C. J.; Price, P.; S o d ,  R.; Salomon, R. G.; Peruzzotti, G.; Casey, 
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G. Ibid. 1974,96, 6774. 
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(a) NaH (1.5 equiv), CH30CH2Cl or CH31 (1.2 equiv), THF,  0 
OC, 2 h; (b) KCN (1.8 equiv), AcOH (1 equiv), MeOH, 40 "C, 3-6 h; 
(c) TBSCl (1.2 equiv), imidazole (2.2 equiv), DMF, room tempera- 
ture, 10 h; (d) Dibal (1.2 equiv), hexane/Et20, -20 OC, 30 min; (e) 
HONH2.HC1 (1.5 equiv), pyridine (2 equiv), CH2Cl2, room temper- 
ature, 4 h; (f) 0.7 N NaOCl (1.5 equiv), CH2C12, room temperature, 
4 h; (9) 10% Pd/C,  Hz (1 atom), B(OHI3 (3 equiv), THF/HzO 
(3:1), room temperature, 2-4 h; (h) CH3SOzCl (1.5 equiv), Et3N 
(3.5 equiv), CH2C12, 0 "C, 40 min. 

With compound 3 in hand, we investigated the optimum 
conditions for the conversion of 3 into 1 using n-butyl 
organometallic compounds (Scheme I) and found that in 
the case of 3a the best yield (95% yield) was realized when 
Bu&uLi was used (THF, -78 to 0 "C, 1 h), while in the 
case of 3b, the use of a cyano mixed cuprate such as 
BuCu(CN)Li or BuCu(CN)MgBr'O (THF, -78 to 0 "C, 1 
h) resulted in essentially quantitative yield of 1.l' From 
the synthetic point of view, the reaction of 3b with RCu- 
(CN)Li or RCu(CN)MgX is more attractive, because in the 
reaction of RzCuLi with 3a, 1 equiv of the R group is 
inevitably wasted, and so this becomes a severe disad- 
vantage when the R group is expensive or difficult to 

(7) Kozikowski, A. P.; Stein, P. D. J.  Am. Chem. SOC. 1982,104,4023. 
Kozikowski and Stein synthesized the racemic PG intermediate i via ii 
by using the intramolecular nitrile oxide cycloaddition as a key step as 
shown below (Kozikowski, A. P.; Stein, P. D. J. Org. Chem. 1984, 49, 
2301): 
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ii 

O C H 2 0 8 r  
810' 

(8) Curran, D. P. J .  Am. Chem. SOC. 1982,104,4024. 
(9) 3a: 'H NMR (CC14, PhH) 6 0.12 (s, 6 H), 0.91 (8 ,  9 H), 2.38 (dd, 

J = 1.7,4.9 Hz, 2 H), 3.36 (8, 3 H), 4.27-4.60 (m, 2 H), 4.68 (dd, J = 7.2, 
12 Hz, 2 H), 5.43 and 6.06 (2 br s, 2 H); I3C NMR (CDCl ) 6 200.9, 144.2, 
119.8, 94.5, 77.0, 69.0, 55.2, 45.3, 25.4, 17.8, -5.0. 3b: IH NMR (CC14, 
PhH) 6 0.12 (8 ,  6 H), 0.89 (s ,9  H), 2.34 (d, J = 4.8 Hz, 2 H), 3.41 (8 ,  3 H), 
4.00-4.20 (m, 1 H), 4.34-4.60 (m, 1 H), 5.41 and 6.05 (2 br s, 2 H); 13C 
NMR (CDC13) 6 201.3, 144.1, 119.8, 82.5,68.5, 56.6, 45.5, 25.6, 17.9, -4.9. 

(10) Posner, G. H. An Introduction to  Synthesis Using Organocopper 
Reagents; Wiley: New York, 1980. 

(11) In the case of 3b, the use of Bu2CuLi resulted in the formation 
of 44 (tert-butyldimethylsilyl)oxy)-3-butyl-2-pentylcyclo~n~one via the 
further conjugate addition of n-butyl to the resulting 1. 
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prepare. Thus, we carried out the synthesis of la-c, the 
intermediates for synthesis of natural PGs or important 
PG analogues, from 3b and the corresponding cyano mixed 
cuprates (eq 3). Compound 3b reacted with the cyano 

O M e  ,&Ran (3) 
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mixed cuprates 10 and 11 prepared from CuCN and the 
corresponding Grignard reagents to afford la12 and lb2 in 
85% and 86% yields, respectively. In the same manner, 
compound 3b was converted into 1c2 in 88% yield by the 
reaction with cuprate 12 prepared from CuCN and (2)- 
LiCH=CH(CH2)40EE (EE = ethoxyethyl). The product 
(IC) thus obtained was converted into Id  in 82% yield by 
the following sequence: (1) pyridinium p-toluenesulfonate 
(PPTS), MeOH, Et20; (2) CrO,, H'; (3) CH2N2. Desily- 
lation of Id  with Bu4NF afforded the known compound 
le,  the spectral data and optical rotation of which are in 
good agreement with the reported values ([.Iz3D +13.3' 
(c 1.01, CH,OH); lit.13 [(uIz3D +12.4' (c  0.91, CH,OH)). 

Next we describe the synthesis of 2 from 3. Treatment 
of 3a with Et2NH in T H F  a t  room temperature for 12 h 
afforded a 95% yield of 4 ([.Iz5D +17.4' ( c  1.04, 
CHC13)).14J5 Thus, compound 4 was obtained in 50% 
overall yield from 5 through nine steps. The conjugate 
addition reaction of 4 with the organocuprate derived from 
the w side chain unit afforded 2 in excellent yield without 
production of the double Michael adduct 13 (Scheme 111). 
Thus, the higher ordered cyano mixed cuprate 14 prepared 
from the vinyllithium derived from (S,E)-3-((tert-butyl- 
dimethylsily1)oxy)-1-iodo-1-octene (>99% ee)16 and the 
Lipshutz reagent (2-thienyl)Cu(CN)Li1' reacted with the 
enone 4 (THF/Et20/pentane, -78 to 0 OC, 1 h) to afford 
2 in 92% yield after hydrolysis: [.Iz5D -46.1' (C 0.781, 
CHCl3).l8 Noteworthy is the fact that in the present 
reaction the double conjugate addition product 13 was not 
produced. However, we found that the reaction of 2 with 
14 provided 13 in excellent yield. These results strongly 
indicate that 2 is formed a t  the time of the hydrolysis of 
the reaction mixture. 

Finally we describe briefly the synthesis of natural PGEs 
using 1 or 2 via a two component coupling process. The 
reaction of 2 with cuprate 11 afforded the corresponding 
conjugate addition product in 9890 yield, from which PGEl 

-54.3O (c 1.0, THF), mp 115-116 "C) was synthesized in 
([.Iz0D -54.0' (C 1.0, THF), mp 114.5-116 "C; lit.'' [.Im~ 
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6490 overall yield by the following sequences: (1) PPTS, 
MeOH, EbO; (2) CrO,, H+; (3) aqueous HF, CH3CN. The 
disilyl ether of PGE2 methyl ester ([.]"D -49.3' ( c  1.14, 
MeOH); lit.20 [(YI1'D -49.9' (c 1.02, MeOH)) was obtained 
from Id and cuprate 14 in 90% yield.21 

As described above, we have succeeded in synthesizing 
the optically active enones 1 and 2 efficiently from the 
readily available 5. We have previously developed efficient 
synthetic methods to prepare PG o side chain units, y-iodo 
or y-tributylstannyl allylic alcohols, by using the Sharpless 
kinetic resolution as a key step.16*22 Therefore, all chiral 
intermediates for the synthesis of PGs and their analogues 
via two-component coupling (eq 1 and 2) are now readily 
available. We hope that these findings make the two 
component coupling process an industrially applicable 
synthetic method. 

Supplementary Material Available: Spectral and physical 
data  for compounds la-d, 6a-9a, and 6b-9b (3 pages). Ordering 
information is given on any current masthead page. 
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